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Appendix B

The Bessel Functions

As Rainville pointed out in his classic booklet [Rainville (1960)],

no other special functions have received such detailed treatment in

readily available treatises as the Bessel functions. Consequently, we

here present only a brief introduction to the subject including the

related Laplace transform pairs used in this book.

B.1 The standard Bessel functions

The Bessel functions of the first and second kind: Jν ,Yν .

The Bessel functions of the first kind Jν(z) are defined from their

power series representation:

Jν(z) :=

∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)

(z
2

)2k+ν
, (B.1)

where z is a complex variable and ν is a parameter which can take

arbitrary real or complex values. When ν is integer it turns out as

an entire function; in this case

J−n(z) = (−1)n Jn(z) , n = 1, 2, . . . (B.2)

In fact

Jn(z) =

∞∑
k=0

(−1)k

k!(k + n)!

(z
2

)2k+n
,

J−n(z)=
∞∑
k=n

(−1)k

k!(k − n)!

(z
2

)2k−n
=
∞∑
s=0

(−1)n+s

(n+ s)!s!

(z
2

)2s+n
.
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When ν is not integer the Bessel functions exhibit a branch point

at z = 0 because of the factor (z/2)ν , so z is intended with |arg(z)| <
π that is in the complex plane cut along the negative real semi-axis.

Following a suggestion by Tricomi, see [Gatteschi (1973)], we can

extract from the series in (B.1) that singular factor and set:

JTν (z) := (z/2)−νJν(z) =

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(z
2

)2k
. (B.3)

The entire function JTν (z) was referred to by Tricomi as the uniform

Bessel function. In some textbooks on special functions, see e.g.
[Kiryakova (1994)], p. 336, the related entire function

JCν (z) := z−ν/2 Jν(2z1/2) =
∞∑
k=0

(−1)kzk

k! Γ(k + ν + 1)
(B.4)

is introduced and named the Bessel-Clifford function.

Since for fixed z in the cut plane the terms of the series (B.1)

are analytic function of the variable ν, the fact that the series is

uniformly convergent implies that the Bessel function of the first

kind Jν(z) is an entire function of order ν.

The Bessel functions are usually introduced in the framework of

the Fucks–Frobenius theory of the second order differential equations

of the form

d2

dz2
u(z) + p(z)

d

dz
u(z) + q(z)u(z) = 0 , (B.5)

where p(z) and q(z) are assigned analytic functions. If we chose in

(B.5)

p(z) =
1

z
, q(z) = 1− ν2

z2
, (B.6)

and solve by power series, we would just obtain the series in (B.1).

As a consequence, we say that the Bessel function of the first kind

satisfies the equation

u′′(z) +
1

z
u′(z) +

(
1− ν2

z2

)
u(z) = 0 , (B.7)

where, for shortness we have used the apices to denote differentiation

with respect to z. It is customary to refer to Eq. (B.7) as the Bessel

differential equation.
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When ν is not integer the general integral of the Bessel equation

is

u(z) = γ1 Jν(z) + γ2 J−ν(z) , γ1, γ2 ∈ C , (B.8)

since J−ν(z) and Jν(z) are in this case linearly independent with

Wronskian

W{Jν(z), J−ν(z)} = − 2

πz
sin(πν) . (B.9)

We have used the notation W{f(z), g(z)} := f(z) g′(z)− f ′(z) g(z).

In order to get a solution of Eq. (B.7) that is linearly independent

from Jν also when ν = n (n = 0,±1,±2 . . . ) we introduce the Bessel

function of the second kind

Yν(z) :=
J−ν(z) cos(νπ)− J−ν(z)

sin(νπ)
. (B.10)

For integer ν the R.H.S of (B.10) becomes indeterminate so in this

case we define Yn(z) as the limit

Yn(z) := lim
ν→n

Yν(z)=
1

π

[
∂Jν(z)

∂ν

∣∣∣∣
ν=n

−(−1)n
∂J−ν(z)

∂ν

∣∣∣∣
ν=n

]
. (B.11)

We also note that (B.11) implies

Y−n(z) = (−1)n Yn(z) . (B.12)

Then, when ν is an arbitrary real number, the general integral of Eq.

(B.7) is

u(z) = γ1 Jν(z) + γ2 Yν(z) , γ1, γ2 ∈ C , (B.13)

and the corresponding Wronskian turns out to be

W{Jν(z), Yν(z)} =
2

πz
. (B.14)

The Bessel functions of the third kind: H(1)
ν ,H(2)

ν . In ad-

dition to the Bessel functions of the first and second kind it is cus-

tomary to consider the Bessel function of the third kind, or Hankel

functions, defined as

H(1)
ν (z) := Jν(z) + iYν(z) , H(2)

ν (z) := Jν(z)− iYν(z) . (B.15)

These functions turn to be linearly independent with Wronskian

W{H(1)
ν (z), H(2)

ν (z)} = − 4i

πz
. (B.16)
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Using (B.10) to eliminate Yn(z) from (B.15), we obtain
H(1)
ν (z) :=

J−ν(z)− e−iνπ Jν(z)

i sin(νπ)
,

H(2)
ν (z) :=

e+iνπ Jν(z)− J−ν(z)

i sin(νπ)
,

(B.17)

which imply the important formulas

H
(1)
−ν (z) = e+iνπH(1)

ν (z) , H
(2)
−ν (z) = e−iνπH(2)

ν (z) . (B.18)

The recurrence relations for the Bessel functions. The func-

tions Jν(z), Yν(z), H
(1)
ν (z), H

(2)
ν (z) satisfy simple recurrence rela-

tions. Denoting any one of them by Cν(z) we have:
Cν(z) =

z

2ν
[Cν−1(z) + Cν+1(z)] ,

C′ν(z) =
1

2
[Cν−1(z)− Cν+1(z)] .

(B.19)

In particular we note

J ′0(z) = −J1(z) , Y ′0(z) = −Y1(z) .

We note that Cν stands for cylinder function, as it is usual to call the

different kinds of Bessel functions. The origin of the term cylinder is

due to the fact that these functions are encountered in studying the

boundary–value problems of potential theory for cylindrical coordi-

nates.

A more general differential equation for the Bessel func-

tions. The differential equation (B.7) can be generalized by intro-

ducing three additional complex parameters λ, p, q in such a way

z2w′′(z)+(1−2p) zw′(z)+
(
λ2q2z2q + p2 − ν2q2

)
w(z) = 0 . (B.20)

A particular integral of this equation is provided by

w(z) = zp Cν (λ zq) . (B.21)

We see that for λ = 1, p = 0, q = 1 we recover Eq. (B.7).
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The asymptotic representations for the Bessel functions.

The asymptotic representations of the standard Bessel functions for

z → 0 and z → ∞ are provided by the first term of the convergent

series expansion around z = 0 and by the first term of the asymptotic

series expansion for z →∞, respectively.

For z → 0 (with |arg(z)| < π if ν is not integer) we have:
J±n(z) ∼ (±1)n

(z/2)n

n!
, n = 0, 1, . . . ,

Jν(z) ∼ (z/2)ν

Γ(ν + 1)
, ν 6= ±1,±2 . . . .

(B.22)


Y0(z) ∼ −iH(1)

0 (z) ∼ iH(2)
0 (z) ∼ 2

π
log (z) ,

Yν(z)∼−iH(1)
ν (z)∼ iH(2)

ν (z)∼− 1

π
Γ(ν)(z/2)−ν , ν > 0.

(B.23)

For z →∞ with |arg(z)| < π and for any ν we have:

Jν(z) ∼
√

2

πz
cos
(
z − ν π

2
− π

4

)
,

Yν(z) ∼
√

2

πz
sin
(
z − ν π

2
− π

4

)
,

H(1)
ν (z) ∼

√
2

πz
e

+i
(
z − ν π

2
− π

4

)
,

H(2)
ν (z) ∼

√
2

πz
e
−i
(
z − ν π

2
− π

4

)
.

(B.24)

The generating function of the Bessel functions of integer

order. The Bessel functions of the first kind Jn(z) are simply re-

lated to the coefficients of the Laurent expansion of the function

w(z, t) = ez(t−1/t)/2 =
+∞∑

n=−∞
cn(z)tn , 0 < |t| <∞ . (B.25)

To this aim we multiply the power series of ezt/2, e−z/(2t), and, after

some manipulation, we get

w(z, t) = ez(t−1/t)/2 =

+∞∑
n=−∞

Jn(z)tn , 0 < |t| <∞ . (B.26)

The function w(z, t) is called the generating function of the Bessel

functions of integer order, and formula (B.26) plays an important

role in the theory of these functions.
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Plots of the Bessel functions of integer order. Plots of the

Bessel functions Jν(x) and Yν(x) for integer orders ν = 0, 1, 2, 3, 4

are shown in Fig. B.1 and in Fig. B.2, respectively.

Fig. B.1 Plots of Jν(x) with ν = 0, 1, 2, 3, 4 for 0 ≤ x ≤ 10.

Fig. B.2 Plots of Yν(x) with ν = 0, 1, 2, 3, 4 for 0 ≤ x ≤ 10.

The Bessel functions of semi-integer order. We now con-

sider the special cases when the order is a a semi-integer number

ν = n + 1/2 (n = 0,±1,±2,±3, . . . ). In these cases the standard

Bessel function can be expressed in terms of elementary functions.
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In particular we have

J+1/2(z) =

(
2

πz

)1/2

sin z , J−1/2(z) =

(
2

πz

)1/2

cos z . (B.27)

The fact that any Bessel function of the first kind of half-integer

order can be expressed in terms of elementary functions now follows

from the first recurrence relation in (B.19), i.e.

Jν−1 + Jν+1 =
2ν

z
Jν(z) ,

whose repeated applications gives
J+3/2(z) =

(
2

πz

)1/2 [sin z

z
− cos z

]
,

J−3/2(z) = −
(

2

πz

)1/2 [
sin z − cos z

z

]
,

(B.28)

and so on.

To derive the corresponding formulas for Bessel functions of the

second and third kind we start from the expressions (B.10) and (B.15)

of these functions in terms of the Bessel functions of the first kind,

and use (B.25). For example, we have:

Y1/2(z) = −J−1/2(z) = −
(

2

πz

)1/2

cos z , (B.29)

H
(1)
1/2(z) = −i

(
2

πz

)1/2

e+iz , H
(2)
1/2(z) = +i

(
2

πz

)1/2

e−iz . (B.30)

It has been shown by Liouville that the case of half-integer order

is the only case where the cylinder functions reduce to elementary

functions.

It is worth noting that when ν = ±1/2 the asymptotic repre-

sentations (B.24) for z → ∞ for all types of Bessel functions re-

duce to the exact expressions of the corresponding functions provided

above. This could be verified by using the saddle-point method for

the complex integral representation of the Bessel functions, that we

will present in Subsection B.3.



April 9, 2013 18:41 World Scientific Book - 9in x 6in MAINARDI˙BOOK-FINAL

180 Fractional Calculus and Waves in Linear Viscoelasticy

B.2 The modified Bessel functions

The modified Bessel functions of the first and second kind:

Iν , Kν . The modified Bessel functions of the first kind Jν(z) with

ν ∈ IR and z ∈ C are defined by the power series

Iν(z) :=

∞∑
k=0

1

Γ(k + 1)Γ(k + ν + 1)

(z
2

)2k+ν
. (B.31)

We also define the modified Bessel functions of the second kind

Kν(z):

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sin(νπ)
. (B.32)

For integer ν the R.H.S of (B.32) becomes indeterminate so in this

case we define Yn(z) as the limit

Kn(z) := lim
ν→n

Kν(z) . (B.33)

Repeating the consideration of Section B.1, we find that Iν(z)

and Kν(z) are analytic functions of z in the cut plane and entire

function of the order ν. We recall that Kν(z) is sometimes referred

to as Macdonald’s function. We note from the definitions (B.31) and

(B.32) the useful formulas

I−n(z) = In(z) , n = 0,±1,±2, . . . (B.33)

K−ν(z) = Kν(z) , ∀ν . (B.34)

The modified Bessel functions Iν(z) and Kν(z) are simply related

to the standard Bessel function of argument z exp(±iπ/2). If

−π < arg(z) < π/2 , i.e., −π/2 < arg(z eiπ/2) < π/2 ,

then (B.1) implies

Iν(z) = e−iνπ/2 Jν(z eiπ/2) . (B.34)

Similarly, according to (B.17), for the same value of z we have

Kν(z) =
iπ

2
eiνπ/2H1

ν (z eiπ/2) . (B.35)

On the other hand, if

−π/2 < arg(z) < π , i.e., −π < arg(z e−iπ/2) < π/2 ,

then it is easily verified that

Iν(z) = e+iνπ/2 Jν(z e−iπ/2) , (B.36)

and

Kν(z) = − iπ
2

e−iνπ/2H2
ν (z e−iπ/2) . (B.37)
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The differential equation for the modified Bessel functions.

It is an immediate consequence of their definitions that Iν(z) and

Kν(z) are linearly independent solutions of the differential equation

v′′(z) +
1

z
v′(z)−

(
1 +

ν2

z2

)
v(z) = 0 , (B.38)

which differs from the standard Bessel equation (B.7) only by the

sign of one term, and reduces to Eq. (B.7) if in Eq. (B.38) we

make the substitution z = ±it. Like the standard Bessel equation,

Eq. (B.38) is often encountered in Mathematical Physics and it is

referred to as the modified Bessel differential equation. Its general

solution, for arbitrary ν can be written in the form

v(z) = γ1 Iν(z) + γ2Kν(z) , γ1, γ2 ∈ C . (B.39)

For the modified Bessel functions the corresponding Wronskian turns

out to be

W{Iν(z),Kν(z)} = −1

z
. (B.40)

The recurrence relations for the modified Bessel functions.

Like the cylinder functions, the modified Bessel functions Iν(z) and

Kν(z) satisfy simple recurrence relations. However, at variance with

the cylinder functions, we have to keep distinct the corresponding

recurrence relations:
Iν(z) =

z

2ν
[Iν−1(z)− Iν+1(z)] ,

I ′ν(z) =
1

2
[Iν−1(z) + Iν+1(z)] ,

(B.41)

and 
Kν(z) = − z

2ν
[Kν−1(z)−Kν+1(z)] ,

K ′ν(z) = −1

2
[Kν−1(z) +Kν+1(z)] .

(B.42)

Recurrence relations (B.41) and (B.42) can be written in a unified

form if, following [Abramowitz and Stegun (1965)], we set

Zν(z) :=
{
Iν(z), eiνπKν(z)

}
. (B.43)
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In fact we get 
Zν(z) =

z

2ν
[Zν−1(z)−Zν+1(z)] ,

Z ′ν(z) =
1

2
[Zν−1(z) + Zν+1(z)] ,

(B.44)

which preserves the form of (B.41).

A more general differential equation for the modified Bessel

functions. As for the standard Bessel functions we have provided

the reader with a more general differential equation solved by related

functions, see (B.20) and (B.21), so here we do it also for the modified

Bessel functions. For this purpose it is sufficient to replace there λ2

with −λ2. Then, introducing three additional complex parameters

λ, p, q in such a way that

z2w′′(z)+(1−2p)zw′(z)+
(
−λ2q2z2q + p2 − ν2q2

)
w(z) = 0 , (B.45)

we get the required differential equation whose a particular integral

is provided by

w(z) = zpZν (λ zq) . (B.46)

Note that for λ = 1, p = 0, q = 1 in (B.45) we recover Eq. (B.38).

Of course the constant e iνπ multiplying the function Kν(z) is not

relevant for Eqs. (B.45)-(B.46), but it is essential to preserve the

same form for the recurrence relations satisfied by the two functions

denoted by Zν(z), as shown in Eqs. (B.44).

The asymptotic representations for the modified Bessel

functions. For the modified Bessel functions we have the following

asymptotic representations as z → 0 and as z →∞.

For z → 0 (with |arg(z)| < π if ν is not integer) we have:
I±n(z) ∼ (z/2)n

n!
, n = 0, 1, . . . ,

Iν(z) ∼ (z/2)ν

Γ(ν + 1)
, ν 6= ±1,±2 . . . .

(B.47)
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and K0(z) ∼ log (2/z) ,

Kν(z) ∼ 1

2
Γ(ν) (z/2)−ν , ν > 0 .

(B.48)

For z →∞ with |arg(z)| < π/2 and for any ν we have:

Iν(z) ∼ 1√
2π

z−1/2 ez , (B.49)

Kν(z) ∼ 1√
2π

z−1/2 e−z . (B.50)

The generating function of the modified Bessel functions

of integer order. For the modified Bessel functions of the first

kind In(z) of integer order we can establish a generating function

following a procedure similar to that adopted for Jn(z), see Eqs.

(B.25)-(B.26). In fact, by considering the Laurent expansion of the

function ω(z, t) = ez(t+1/t)/2 obtained by multiplying the power series

of ezt/2, ez/(2t), we get after some manipulation

ω(z, t) = ez(t+1/t)/2 =

+∞∑
n=−∞

In(z) tn , 0 < |t| <∞ . (B.51)

Plots of the modified Bessel functions of integer order.

Plots of the Bessel functions Iν(x) and Kν(x) for integer orders

ν = 0, 1, 2 are shown in Fig. B.3.

Fig. B.3 Plots of Iν(x), Kν(x) with ν = 0, 1, 2 for 0 ≤ x ≤ 5.
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Since the modified Bessel functions exhibit an exponential be-

haviour for x→∞, see (B.49)-(B.50), we show the plots of e−x Iν(x)

and exKν with ν = 0, 1, 2 for 0 ≤ x ≤ 5 in Fig B.4.

Fig. B.4 Plots of e−xIν(x), exKν with ν = 0, 1, 2 for 0 ≤ x ≤ 5.

The modified Bessel functions of semi-integer order. Like

the cylinder functions the modified Bessel functions of semi-integer

order can be expressed in terms of elementary functions. Starting

with the case ν = 1/2 it is easy to recognize

I1/2(z) =

(
2

πz

)1/2

sinh z , I−1/2(z) =

(
2

πz

)1/2

cosh z , (B.52)

and

K1/2(z) = K−1/2(z) =
( π

2z

)1/2
e−z . (B.53)

For general index ν = n + 1/2 the corresponding formulas are ob-

tained from (B.48) and the recurrence relations (B.41) and (B.42).

B.3 Integral representations and Laplace transforms

Integral representations. The basic integral representation of

the standard Bessel function Jν(z) withRe z > 0 is provided through
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the Hankel contour around the negative real axis, denoted by Ha−
and illustrated in Fig. A.3 left. We have, see e.g. [Davies (2002)],

Jν(z) =
1

2πi

∫
Ha−

p−ν − 1 exp

[
z

2

(
p− 1

p

)]
dp , Re z > 0 , (B.54)

where the restriction Re z > 0 is necessary to make the integral

converge. Then, we can split the integral in two contributions:

(i) from the circular path where p = exp(iθ) (−π < θ < π);

(ii) from the straight paths where p = exp(s± iπ) (0 < s <∞).

We have:

(i)
1

2π

∫ +π

−π
e(−iνθ+iz sin θ) dθ =

1

π

∫ π

0
cos(νθ − z sin θ) dθ ; (B.55)

(ii)
1

2πi

∫ 0

∞
eνs+iπν−z(e

s−e−s)/2 ds+
1

2πi

∫ 0

∞
eνs−iπν−z(e

s−e−s)/2 ds

= −sin(νπ)

π

∫ ∞
0

exp(−z sinh s− νs) ds .

(B.56)

Thus, the final integral representation is

Jν(z) =
1

π

∫ π

0
cos(νθ − z sin θ) dθ

−sin(νπ)

π

∫ ∞
0

exp(−z sinh s− νs) ds , Re z > 0 .

(B.57)

For integer ν the second integral vanishes. The first integral is known

as Bessel’s integral.

It is a simple matter to perform an analytic continuation of (B.54)

to all the domain of analyticity of Jν(z). If we temporarily restrict z

to be real and positive, then the change of variables u = pz/2 yields

Jν(z) =
(z/2)ν

2πi

∫
Ha−

u−ν − 1 exp
[
u− z2/(4u)

]
du , (B.58)

where the contour is unchanged since z is real. But the integral in

(B.58) defines an entire function of z because it is single-valued and

absolutely convergent for all z. We recognize from the pre-factor in

(B.58) that Jν(z) has a branch point in the origin, if ν is not integer.
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In this case, according to the usual convention, we must introduce a

branch cut on the negative real axis so that Eq. (B.58) is valid under

the restriction −π < arg(z) < π.

We note that the series expansion of Jν(z), Eq. (B.1) may

be obtained from the integral representation (B.58) by replacing

exp[−z2/(4u)] by its Taylor series and integrating term by term and

finally using Hankel’s integral representation of the reciprocal of the

Gamma function, Eq. (A.19a). Of course, the procedure can be

inverted to yield the integral representation (B.58) from the series

representation (B.1).

Other integral representations related to the class of Bessel func-

tions can be found in any handbook of special functions.

Laplace transform pairs. Herewith we report a few Laplace

transform pairs related to Bessel functions extracted from [Ghizzetti

and Ossicini (1971)], where the interested reader can find more for-

mulas, all with the proof included. We first consider

Jν(αt) ÷

(√
s2 + α2 − s

)ν
αν
√
s2 + α2

, Re ν > −1 , Re s > |Imα| , (B.59)

Iν(αt) ÷

(
s−
√
s2 − α2

)ν
αν
√
s2 − α2

, Re ν > −1 , Re s > |Re α| . (B.60)

Then, we consider the following transform pairs relevant for wave

propagation problems:

J0

(
α
√
t2 − a2

)
Θ(t−a)÷ e−a

√
s2 + α2

√
s2 + α2

, Re s > |Imα| , (B.61)

I0

(
α
√
t2 − a2

)
Θ(t−a) ÷ e−a

√
s2 − α2

√
s2 − α2

, Re s > |Re α| , (B.62)

aα
J1

(
α
√
t2 − a2

)
√
t2 − a2

Θ(t− a) ÷ e−as − e−a
√
s2 + α2

,

Re s > |Imα|,
(B.63)

aα
I1

(
α
√
t2 − a2

)
√
t2 − a2

Θ(t− a) ÷ e−as − e−a
√
s2 − α2

,

Re s > |Re α| .
(B.64)
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B.4 The Airy functions

The Airy differential equation in the complex plane (z ∈ C).

The Airy functions Ai(z), Bi(z) are usually introduced as the two

linear independent solutions of the differential equation

d2

dz2
u(z)− z u(z) = 0 . (B.65)

The Wronskian is

W{Ai(z), Bi(z)} =
1

π
. B(65)

Taylor series.

Ai(z) = 3−2/3
∞∑
n=0

z3n

9n! Γ(n+ 2/3)

−3−4/3
∞∑
n=0

z3n+1

9n! Γ(n+ 4/3)
.

(B.66a)

Bi(z) = 3−1/6
∞∑
n=0

z3n

9n! Γ(n+ 2/3)

+3−5/6
∞∑
n=0

z3n+1

9n! Γ(n+ 4/3)
.

(B.66b)

We note

Ai(0) = Bi(0)/
√

3 = 3−2/3/Γ(2/3) ≈ 0.355 . (B.67)

Functional relations.

Ai(z) + ωAi(ωz) + ω2Ai(ω2z) = 0 , ω = e−2iπ/3 . (B.68a)

Bi(z) = iωAi(ωz)− iω2Ai(ω2z) , ω = e−2iπ/3 . (B.68b)

Relations with Bessel functions.{
Ai(z) = 1

3z
1/2
[
I−1/3(ζ)− I1/3(ζ)

]
,

Ai(−z) = 1
3z

1/2
[
J1/3(ζ) + J−1/3(ζ)

]
,

ζ =
2

3
z3/2 . (B.69a)

{
Bi(z) = 1√

3
z1/2

[
I−1/3(ζ) + I1/3(ζ)

]
,

Bi(−z) = 1√
3
z1/2

[
J−1/3(ζ)− J1/3(ζ)

]
,

ζ =
2

3
z3/2 . (B.69b)
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Asymptotic representations.

Ai(z) ∼ 1

2
√
π
z−1/4e−2z3/2/3 , z →∞ , |arg z| < π . (B.70a)

Bi(z) ∼ 1√
π
z−1/4e2z3/2/3 , z →∞ , |arg z| < π/3 . (B.70a)

Integral representations for real variable (z = x ∈ IR).

Ai(x) =
1

2πi

∫ +i∞

−i∞
eζx− ζ

3/3 dζ

=
1

π

∫ ∞
0

cos
(
ux+ u3/3

)
du .

(B.71a)

Bi(x) =
1

π

∫ ∞
0

[
eux− u

3/3 + sin
(
ux+ u3/3

)]
du . (B.71b)

Asymptotic representations for real variable (z = x ∈ IR).

Ai(x) ∼

{
1

2
√
π
x−1/4 exp

(
−2x3/2/3

)
, x→ +∞ ,

1√
π
|x|−1/4 sin

(
|x|3/2/3 + π/4

)
, x→ −∞ .

(B.72a)

Bi(x) ∼

{
1√
π
x−1/4 exp

(
2x3/2/3

)
, x→ +∞ ,

1√
π
|x|−1/4 cos

(
|x|3/2/3 + π/4

)
, x→ −∞ .

(B.72b)

Graphical representations for real variable (z = x ∈ IR).

We present the plots of the Airy functions with their derivatives on

the real line in Figs B.5 and B.6.

As expected from their relations with the Bessel functions, see

Eqs. (B.69a) and (B.69b), and from their asymptotic representa-

tions, see Eqs (B.72a), (B.72b), we note from the plots that for x > 0

the functions Ai(x), Bi(x) are monotonic (Ai(x) is exponentially de-

creasing, Bi(x) is exponentially increasing), whereas for x < 0 both

of them are oscillating with a slowly diminishing period and an ampli-

tude decaying as |x|−1/4. These changes in behaviour along the real

line are the most noteworthy characteristics of the Airy functions.

For a survey on the applications of the Airy functions in physics

we refer the interested reader to [Vallé and Soares (2004)].
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Fig. B.5 Plots of Ai(x) (continuous line) and its derivative Ai′(x) (dotted line)
for −15 ≤ x ≤ 5.

Fig. B.6 Plots of Bi(x) (continuous line) and its derivative Bi′(x) (dotted line)
for −15 ≤ x ≤ 5.
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